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PREDA, (Parallel Relay-and-Execution Distributed Architecture), is a novel programming model for general smart contracts
dealing with multi-chain blockchain systems, in which logic execution and ledger states are partitioned and distributed across
chains. In this document, we introduce the core features of the PREDA programming language with code examples.

The PREDA language is a high-level programming language with curly-bracket and Algol-like syntax style for general
smart contract development. It is naturally parallelized and distributed based on the proposed programming model, which
provides object-oriented scope syntax and lambda function syntax to support the two core features of the PREDA model.
The PREDA language aims to maximize the interoperability with sequential, non-distributed programming languages (e.g.
Solidity), which allows cross-language invocation with unifies type system and asynchronous calls to/from languages with
sequential programming model.

Compilation system and execution engine of the PREDA language is implemented as compiling to intermediate representa-
tion, and then building to platform-specific native binaries or virtual machine bytecodes. Solidity compiler and Ethereum
Virtual Machine are integrated as parts of the system to realize the interoperability and cross-language compilation. Compila-
tion system generates function symbols and unified argument serialization, which enable cross-language invocation and relay
transaction composition based on functional relay semantics.

1 SCOPES AND RELAYS
The PREDA programming language provides syntax to decompose states of a smart contract into scopes with
different synchronization requirements within- and across-chains/shards, which enables state sharding for
general smart contracts rather than payment contracts. The PREDA language also provides syntax to decompose
execution flow within a contract function into multiplemicrofunctions that are relayed and executed in different
shards based on their data dependencies of states in different scopes.

1.1 Built-in Scopes
PREDA has three built-in scopes, i.e., global, shard and address. They correspond to the data partitioning
structures in sharded blockchains. Programmers specify the scopes of the contract variables, and the underlying
blockchain system initiates and executes contract functions on the scopes accordingly:

• Global scope is used to define common contract states that must be shared and synchronized by all
shards. A global scope state is effectively a singleton that is available throughout the network. In addition,
all deployed contracts and their codes belong to the global scope. A contract can import and interpret any
function from another deployed contract.

• Shard scope is used to define common contract states within a shard, but not specific to a user. A shard
scope state must be instantiated and updated independently in each shard.

• Address scope is used to define contract states for each user. An address scope state is initiated and
updated individually in each address. This is the finest granularity a contract can expose to the underlying
system.
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From the perspective of object allocation, the global scope is the equivalent of a conventional smart contract.
Everything defined in the global scope has an instance on all blockchain nodes and the instances are consistent
globally. The shard scope defines a state that has one instance on each blockchain node of the shard and the
instances are consistent in the shard. The address scope defines a state that has one instance for an address and
only blockchain nodes belonging to the same shard that have the address have the instances.

The keywords “@global”, “@shard”, and “@address” are used before variables and functions to define their
scopes as below. Note that when a state variable or function is defined without specifying a scope, it defaults to
“@global”.

1 contract MyContract {

2 @global uint32 numTotalAccounts; // only one instance globally

3 @shard uint32 numAccountsInShard; // one instance per shard

4 @address uint512 addressBalance; // one instance per address

5 }

Listing 1. Three built-in scopes in PREDA

1.2 User-defined Scopes
In addition to the built-in scopes, programmers can define their own scopes as “@scopeName = global by
typeName;” . It means that there is a user-defined scope named “scopeName”, which is indexed by “typeName”
on chain. The “typeName” can be one of the following by-default datatypes in PREDA: uint16, uint32, uint64,
uint128, uint256, uint512, and address. Note that even when two scopes are defined with the same “typeName”,
they are regarded as different scopes. A user-defined scope can be used after it’s defined in a PREDA program as
below:

1 contract C {

2 @myScope = global by uint32;
3 @myScope string myStr;

4 }

Listing 2. User-defined scopes in PREDA

In this example, the scope “myScope” can have up to 232 − 1 instances that are indexable by a uint32 value.
Which shard each of these instances resides in is decided by the underlying blockchain system and transparent
to the contract.

1.3 Relay
When a contract function executing in a scope needs to access data defined in another scope that the function
cannot directly access, a relay is required in PREDA. This means the transaction execution context is switched
from one scope to another but the execution logic is continued. Listing 3 shows the PREDA implementation of
the token transfer contract, which is equivalent to the Solidity function transfer. The keyword “@address” is
used to define the scope of contract variables and functions that belong to an address. The transfer function
executing at the scope of the sender address does the withdraw on the balance of the sender and then uses a
relay to call the deposit function, as the deposit is executed at the scope of the recipient address.

1 contract Token {

2 @address bigint balance;

3 @address function bool transfer(address to, bigint amount) export
4 {

5 if(balance >= amount)

6 {

7 balance -= amount;

8 relay@to deposit(amount);
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9 return true;
10 }

11 return false;
12 }

13
14 @address function bool deposit(bigint amount)

15 {

16 if (amount <= 0) return false;
17 balance += amount;

18 return true;
19 }

20 }

Listing 3. Corresponding code snippet of transfer function in PREDA for ERC20 transfer in Solidity

As shown in this example, “relay” is the keyword to specify a relay statement and “@” is another keyword to
specify the destination of a relay. A formal representation of a relay is:

𝑟𝑒𝑙𝑎𝑦@𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) (1)

Comparing the code example in Listing 3 with the Solidity implementation of ERC20 token transfer contract [3],
one can find that the PREDA implementation converts the map balances in the Solidity implementation to an
integer variable balance and does not specify whose balance is as Solidity did, e.g., message sender’s balance
as balances[msg.sender]. This is because the global variable balances defined in Solidity is converted to an
address variable balance in PREDA. The execution context is switched from the sender’s address scope to the
recipient address scope with the relay statement.
Note that although PREDA doesn’t specify how to implement a relay in the underlying blockchain system, a

relay is recommended to be implemented as an asynchronous relay transaction. That is because (1) transaction is
the finest granularity of communication between blockchain nodes and almost all core modules of a blockchain,
e.g., transaction submission and propagation, block generation and verification, security mechanisms, etc., are
built upon transactions; and (2) in a blockchain, it is unknown when a transaction will be executed. In the worst
case, a transaction is discarded by blockchain nodes after an extremely long wait. The semantics of a relay must
be asynchronous.

Figure 1 shows how the PREDA model executes transactions in parallel. Assuming there are four shards 𝐴, 𝐵,
𝐶 , 𝐷 , and two user-initialized transactions 𝜑 and 𝜑 ′, which can be the transactions invoking the PREDA function
transfer shown in Listing 3. The withdraw operation 𝜌 that only involves the state in shard 𝐴 is handled by
a miner in shard 𝐴. If the account balance satisfies the cost of this withdraw operation, a block 𝑖 + 1 carrying
the transaction 𝜑 is created by the miner and appended to the chain of shard 𝐴. After that, a relay transaction
carrying the deposit operation 𝜙 is composed in shard 𝐴 and forwarded to shard 𝐵. The deposit operation 𝜙

that only involves the state in shard 𝐵 can be executed by shard 𝐵. Once the relay transaction is picked up by
another miner in shard 𝐵, operation 𝜙 is executed, concluding the complete of the transaction 𝜑 . Similarly, the
withdraw operation 𝜙 of transaction 𝜑 ′ is executed in shard 𝐶 and its deposit operation 𝜌 is executed in shard 𝐷 .
The withdraw operations on addresses in different shards can be executed in parallel and similarly to the deposit
operations.

1.4 Relays between Shard and Global Scopes
In the PREDA token transfer example (shown in Listing 3), the relays occur between address scopes. In this
subsection, we shown an example that the relays occur between the shard and global scopes. Listing 4 shows the
PREDA Ballot contract. It is functionally equivalent to the Solidity Ballot contract, but is designed to execute a
large number of voting transactions in parallel on a sharded blockchain. The PREDA implementation is quite
complex, but shows many features, e.g., relay transactions across different types of scopes. The main ideas of the
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Fig. 1. Parallel execution of transactions 𝜑 and 𝜑 ′ in different shards.

PREDA Ballot contract can be explained as below: first, the contract allows the voters to vote in different shards
based on address-to-shard mapping (by the underlying blockchain); and second, the contract accumulates the
voting results of each shard to the final voting result. The PREDA Ballot contract can avoid reading and writing
the shared contract state (i.e., the final voting result) simultaneously throughout the network, when processing
voting transactions issued by the voters. In this case, we show how voting is implemented in the shard scope and
how the final voting result is accumulated in the global scope.

1 contract Ballot {

2 struct Proposal {

3 string name;

4 uint64 totalVotedWeight;

5 }

6
7 struct BallotResult {

8 string topVoted;

9 uint32 case;
10 }

11
12 @global address controller;

13 @global uint32 current_case;

14 @global array <Proposal > proposals;

15 @global BallotResult last_result;

16
17 @global uint32 shardGatherRatio;

18 @global function shardGather_reset (){ shardGatherRatio = 0u; }

19 @global function bool shardGather_isCompleted (){ return shardGatherRatio == 0x80000000u; }

20 @global function bool shardGather_gather ()

21 { shardGatherRatio += 0x80000000u >>__block.get_shard_order ();

22 return shardGatherRatio == 0x80000000u;

23 }

24
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25 @shard array <uint64 > votedWeights;

26 @address uint64 weight;

27 @address uint32 voted_case;

28
29 @address function bool is_voting ()

30 {

31 return last_result.case < current_case;

32 }

33
34 @address function init(array <string > names) export {

35 relay@global (^names){

36 for (uint32 i = 0u; i < names.length (); i++) {

37 Proposal proposal;

38 proposal.name = names[i];

39 proposal.totalVotedWeight = 0u64;

40 proposals.push(proposal);
41 }

42 current_case ++;

43 last_result.case = 0u;

44 last_result.topVoted = “ ”;

45 }

46 }

47
48 @address function bool vote(uint32 proposal_index , uint32 case_num) export {

49 if(case_num == current_case && case_num > voted_case && proposal_index <proposals.length ())
50 {

51 voted_case = case_num;

52 votedWeights.set_length(proposals.length ());
53 votedWeights[proposal_index] += weight;

54 return true;
55 }

56 return false;
57 }

58
59 @address function finalize () export {

60 relay@global (){

61 shardGather_reset ();

62 relay@shards (){

63 __debug.print(“Shard Vote: ”, votedWeights);

64 relay@global(auto shardVotes = votedWeights) {

65 for(uint32 i=0u; i<shardVotes.length (); i++)

66 proposals[i]. totalVotedWeight += uint64(shardVotes[i]);
67
68 if(shardGather_gather ()) {

69 last_result.case = current_case;

70 uint64 w = 0u64;

71 for(uint32 i=0u; i<proposals.length (); i++) {

72 if(proposals[i]. totalVotedWeight > w)

73 {

74 last_result.topVoted = proposals[i].name;

75 w = proposals[i]. totalVotedWeight;

76 }

77 }

78 }

79 }

80 }

81 }

82 }

83 }

Listing 4. The PREDA ballot contract
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In the address scope function init, the controller of the contract is responsible for initiating the global scope
variable proposals. This is done by issuing a relay transaction from the address scope to the global scope, which
is corresponding to broadcast a relay transaction to the network in the underlying blockchain and to initialize
the proposals and last_result variables. After the execution of the init function, the global scope variable
proposals is initialized on all blockchain nodes.

In the address scope function vote, each voter can directly read the global scope variable proposals and also
directly write the shard scope variable voteWeights, because the global scope variable is globally consistent,
and the shard scope variable is consistent in each shard. At runtime, user-initiated transactions calling the vote
function are executed by different shards based on address-to-shard mapping. Each transaction only changes the
shard scope variable voteWeights in the corresponding shard.
In the address scope function finalize, the controller of the contract issues a relay transaction from the

address scope to the global scope to reset the global scope variable shardGatherRatio and request all shards
to report the value of the shard scope variable voteWeights. Each shard then sends a relay transaction with
the value of voteWeights to the global. At the global scope on each blockchain node, the partial voting results
voteWeights are accumulated to the final voting result proposals. After receiving the partial voting results
from all shards, i.e., in the conditional sentence of calling the shardGather_gather function, the winner of the
voting proposals is calculated and set as last_result.

2 MORE LANGUAGE FEATURES
PREDA language has enriched features. We introduce several of them in this section. Please refer to PREDA
Language Specification [4] for more details.

2.1 Relay Statement with Lambda Expression
As shown in the previous example of the PREDA ballot contract, a relay statement can be defined as a lambda
function. The format is quite similar to defining a function, except that:

• A function name is not needed. The compiler automatically generates a name for it.
• The scope of an anonymous function can be address (user-defined), shard, or global, based on the relay
type.

• For each parameter, an argument must be provided as well.
• It is possible to use the "auto" keyword as the parameter type. In this case, the type is taken from the
corresponding argument expression.

The relay function body is executed on the per-address context of target address, the per-shard context of the
target shards, or the global context. It cannot be mixed with the current context scope on which the relay
statement is invoked. There’s two ways to specify a parameter in the relay lambda.

1 relay@someAddress (..., ^identifier , ...){

2 }

3 relay@someAddress (..., auto identifier = identifier , ...){

4 }

Listing 5. Relay Statement with Lambda Expression

They are equivalent but the first one is a simplified expression, where the ˆ operator is used to capture variable
by value, programmers can thus pass parameters to the function without renaming them.

2.2 System-reserved Functions
System-reserved functions are a group of special functions with the names reserved by PREDA for special
purposes. They don’t always have to be defined by a contract. But when they are, the definition must match a
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certain signature and will be invoked by the system at certain points. They are const functions and may emit relay
transactions to do the actual task if needed. In addition, system-reserved functions may not access the transaction
context (because they are not invoked by a transaction), or any part of the block context that is of payload or
mined dependency (because they are executed before transactions in a block). There are two system-reserved
functions in PREDA .

• on_deploy(): it is a global function that is invoked when a contract is deployed. It can be used to do some
initialization of the contract state. Its signature is: function on_deploy().

• on_scaleout(): it is a shard function that is invoked when the scaleout of the sharded blockchain happens,
i.e. when the shard order of the blockchain system is increased by 1, i.e., from 𝑛 − 1 to 𝑛 and the total
number of shards doubles from 2𝑛−1 to 2𝑛 . On scaleout, each of the old 2𝑛−1 shards is forked to two new
shards: from 𝑠ℎ𝑎𝑟𝑑 [𝑖] to 𝑠ℎ𝑎𝑟𝑑 [𝑖] and 𝑠ℎ𝑎𝑟𝑑 [𝑖 + 2𝑛−1], where 0 <= 𝑖 < 2𝑛−1. The on_scaleout function
is called 2𝑛 times, once per shard. It can be used to split the old per-shard contract state into the two
new shards. The signature is: function on_scaleout(bool). The boolean parameter tells whether the
current shard is forked in place (when false), or with offset 2𝑛−1 (when true).

Note that although the system-reserved functions are defined in the PREDA language specification, they are not
mandatory for underlying sharded blockchain systems. If a sharded blockchain doesn’t support a system-reserved
function, a PREDA contract using the function can still be compiled and executed on the sharded blockchain but
doesn’t have the functionality defined by the system-reserved function.

2.3 Multiple Contracts
In PREDA , a contract could interact with other contracts that are already deployed on the chain. To interact with
another contract that contract must first be imported to the current contract as below:

1 import DAppName.ContractName [as AliasName ];

DAppName and ContractName are the corresponding names assigned when deploying the imported contract.
AliasName is an optional arbitrary identifier to reference it in the current contract. If AliasName is not given,
ContractName will be used instead for referencing. The import must be declared before the new contract
definition.

The PREDA language specification supports explicit import and implicit import. When a contract is imported
by an import directive, it is explicitly imported. Besides that, a contract could also be implicitly imported if it is
indirectly imported, like in the following example:

1 contract ContractA{

2 }

3
4 import MyDApp.ContractA as A; // ContractA is explicitly imported

5 contract ContractB{

6 }

7
8 import MyDApp.ContractB as B; // ContractA is implicitly imported

9 contract ContractC{

10 }

An implicitly-imported contract doesn’t have a user-defined alias and can be referenced by its contract name
by the compiler. In the above example, MyDApp.ContractA is referenced as ContractA in Contract C. To have a
specific alias, it could be explicitly imported again. For example:

1 import MyDApp.ContractB as B; // ContractB is explicitly imported

2 import MyDApp.ContractA as A; // ContractA is explicitly imported as A

3 contract ContractC{

4 }
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After importing a contract, all user-defined types and scopes from it could be accessed under the contract alias.
As shown in the example below, after ContractB imports ContractA, the function f in ContractB has the scope
myScope defined in ContractA.

1 contract ContractA{

2 struct S{

3 int32 i;

4 }

5 enum E{

6 E0,

7 E1

8 }

9 @myScope = global by address;
10 }

11 import MyDApp.ContractA as A;

12 contract ContractB{

13 @A.myScope {

14 A.S s;

15 A.E e;

16 function f(){

17 s.i = 1i32;

18 e = A.E.E0;

19 }

20 }

21 }

Similar to user-defined types, public functions defined in other contracts could also be directly referenced via
the alias.

1 contract ContractA{

2 struct S{

3 int32 i;

4 }

5 enum E{

6 E0,

7 E1

8 }

9 @myScope = global by address;
10 @myScope {

11 function f(S s, E e) public{ // only public functions can be called by other contracts

12 }

13 }

14 }

15 import MyDApp.ContractA as A;

16 contract ContractB{

17 @A.myScope {

18 A.S s;

19 A.E e;

20 function f(){

21 A.f(s, e); // call the public function f() from MyDApp.ContractA

22 }

23 }

24 }

The basic scope visibility rules hold for cross-contract calls, i.e., each scope can only call functions in the same
scope, in the shard scope and const functions in the global scope.
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2.4 Interfaces
Interfaces provide another way to work with multiple contracts. While only known contracts can be imported,
interfaces enables interaction with arbitrary contracts that implements it. Interfaces are defined at the contract
level. Each interface is a set of function definitions with empty bodies. Similar to regular functions, the functions
of an interface must also reside in scopes:

1 contract A {

2 interface Addable {

3 @address {

4 function Add(uint64 value);
5 }

6 @global {

7 function uint64 GetTotal () const;

8 }

9 }

10 }

The above contract defines an interface Addable with two functions, each in a different scope. Interfaces can use
scopes freely like scopes in contracts, including user-defined scopes and imported scopes from other contracts.
Contracts can choose to implement interfaces using the implements keyword at definition. A contract can

choose to implement arbitrary number of interfaces, which can either be those defined in the same contract, or
imported interfaces from other contracts.

1 import A;

2 contract B implements A.Addable , Printable { // use "implements" to implement interfaces

3 interface Printable {

4 @global {

5 function Print() const;

6 }

7 }

8
9 @global {

10 uint64 total;

11 function uint64 GetTotal () public const { // GetTotal() for A.Addable

12 return total;

13 }

14 function Print() public const { // Print() for Printable

15 __debug.print(globalTotal);

16 }

17 }

18 @address {

19 function Add(uint64 value) public { // Add() for A.Addable

20 relay@global (^ value) {

21 total += value;
22 }

23 }

24 }

25 }

The above contract implements two interface: Printable defined in the contract itself, and Addable defined in
contract A from the previous section.

To implement an interface, a contract must implement all the functions defined in that interface, and the signa-
ture of the implemented function must match exactly the definition in the interface, i.e. the same function name,
parameter list and type, return type, const-ness and scope. In addition, interface function must be implemented
as public, since they are used for cross-contract calls. When a contract implements an interface, other contracts
can interact with it via the interface. For example:
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1 import B; // A is implicitly imported via B

2 contract C {

3 @address {

4 function test() {

5 A.Addable addable = A.Addable(B.__id()); // initialize addable with contract B’s id

6 addable.Add (100 u64); // Calls B.Add() via the interface

7 }

8 }

9 }

In this example, a variable of interface type A.Addable is defined. Interface types can be initialized with a contract
id. Here, it is initialized with a B’s id using the build-in function __id() that is automatically generated for each
contract. Once an interface variable is initialized, it can be used to call any function defined in the interface and
routed to the corresponding implementation in contract B. With interfaces, a contract can interact with any other
contract that implements the interface without knowing them. For example:

1 import A;

2 contract Adder {

3 @address {

4 function Add(A.Addable addable , uint64 value) public {

5 addable.Add(value);
6 }

7 }

8 }

When the interface is defined, there is no need to import any other contract other than A. The function Add accepts
an A.Addable interface as parameter, which could possibly be initialized by the id of any other contract that
implements A.Addable. Note that if calling a function on an interface variable that is uninitialized, or initialized
with the id of a contract that actually doesn’t implement the interface, an error would occur and the contract
execution will fail immediately.

3 DEPLOYMENT AND EXECUTION ENGINES
We have implemented a preview toolchain for the PREDA programming language. The PREDA language preview
toolchain includes the pre-built PREDA compilers and execution engines, VSCode extensions, and sample smart
contracts and execution scripts. Programmers can use VSCode to edit, compile, and execute PREDA smart
contracts in a local blockchain simulator. The chain simulator uses multiple threads to mimic multiple shards of a
sharded blockchain (one for each) on a single node. Programmers can also use the VSCode extension to check the
contract execution results, e.g., address states on the chain. The supported command lines of the chain simulator
and the script syntax of the chain simulator can be found in the PREDA toolchain user manual [5].

3.1 Contract State Management in Chain Simulator
In the implementation of the PREDA chain simulator, we use the Map of the contract ID to the contract states as
the basic data structure. The basic chain state is divided into pieces represented as <scope, [shard/address],

contract map>. The chain simulator uses this structure to track partial changes to the entire chain state. At
runtime, the execution of transactions, including those in chain blocks and orphaned blocks, results in newly
modified contract states. We store incremental changes to contract states as follows:
<Global State> ::= <Contract Map>
<Shard State> ::= <Contract Map>
<Address State> ::= MAP(<Address> => <Contract Map>)
<Contract Map> ::= MAP(<Contract Id> => <State History>)
<State History> ::= ARRAY(<State on Chain>)
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<State on Chain> ::= <Height, Block Id, Opaque State Data>

Note that the array <State History> is sorted as the chain height increases. In the chain simulator, the total
chain states include: (1) the base chain states for archived blocks that are not reverted, and (2) a history of
incremental changes made by all blocks since the height of the last archived block, including blocks in forked
chains.

3.2 Contract Compilation
We employ a two-stage process to compile smart contracts written in PREDA to native code. The first stage is a
transpiler that interprets the PREDA source code and converts it to an intermediate representation, which is
then consumed by the second stage to generate the binary code. We use C++ source code as our intermediate
representation.

Our transpiler uses ANTLR [1] to generate the parser code based on the PREDA language specification. Then,
the transpiler walks through the abstract syntax tree (AST) to extract state variables, user-types, and function
definitions, and outputs the corresponding C++ code. The output of the transpiler for each contract is a single
C++ complication unit. To compile C++ code to binary code, we use MinGW-w64 [2] on Windows and g++ on
Linux. Their output are dynamic libraries that can be loaded on demand at runtime when a contract needs to be
executed on the chain simulator.
Other than the local chain simulator, we are developing an experimental sharded blockchain for PREDA ,

with the supports of blockchain wallets and explorer services. We are also integrating EVMone into the chain
simulator to implement the interoperability between Solidity and PREDA.
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