
1

PREDA
A Distributed Programming Model for General Smart Contracts on
Sharded Blockchains and Cross-Chain Bridges

PREDA DEV TEAM

PREDA, Parallel Relay-and-Execution Distributed Architecture, is a novel programming model for general smart contracts
running on multi-chain blockchain systems, in which transaction executions and ledger states are divided and distributed
across chains. PREDA model decouples the schemes of such dividing/distributing with the architecture of the underlying
blockchain system and the actual consensus protocols employed.

PREDA model divides the entire ledger to a number of non-overlapped scopes, which can be distributed and parallelized
across chains. Programmable scope schemes are introduced to describe such distributed dividing, and to define ledger states
and functions within each scope. Every scope is an independent sequential state machine that can be distributed and driven
by an arbitrary chain in the system. All scopes are inherently parallelized by being distributed in multiple chains that operate
in parallel.

Contract function invocations across scopes are allowed, which facilitate the interactions and coordinations of scopes. Func-
tional relay semantics provide a systemic and legible way to express customized workflow that executes across scopes without
involving underlying details of consensus systems and relaying mechanisms. Cross-scope invocations are asynchronous and
are by design decoupled with the sharding structure, or bridging relationship, of the underlying multi-chain system.

1 INTRODUCTION
Smart contracts [3] provide an efficient and flexible way to define applications on blockchain systems, a.k.a.
DApps. Listing 1 shows an example of a simplified contract for payment (ERC20) written in Solidity [8], which
is the most widely adopted smart contract language. The code snippet defines a contract state, i.e. balances
representing the balances of each corresponding address, and a contract function transfer, which is to transfer
a given number of amount tokens from the transaction sender (msg.sender) to a specific recipient (receiver).
A payment transaction is a piece of digitally signed data indicates an invocation of the function transfer with
serialized function augments (receiver, amount).

1 contract ERC20Basic is IERC20

2 {

3 mapping(address => uint256) balances;

4 function transfer(address receiver ,uint256 amount) ...

5 {

6 require(amount <= balances[msg.sender]);
7 balances[msg.sender] = balances[msg.sender] - amount;

8 balances[receiver] = balances[receiver] + amount;

9 return true;
10 }

11 }

Listing 1. The code snippet of transfer function in an ERC20 contract in Solidity

In this example, the ledger state is a map from user (address) to their balance and, in any function, the entire
states are available for reading and writing with a direct invocation that returns immediately. A smart contract is
defined equivalently to a sequential state machine, which implies a simple but constrained programming model.

• Sequential Execution Each contract function invocation or every transaction must be executed sequen-
tially to avoid concurrent access of ledger states, which is potentially unsafe.

• Single-Box States Since any function has direct and immediate access to any part of the states, the entire
ledger states must be available in all nodes and kept synchronized as chain grows. This requires, at least,

Author’s address: PREDA Dev Team, devteam@preda-lang.org.

1:2 • PREDA Dev Team, devteam@preda-lang.org

that all transactions making changes to ledger states must be transferred and executed in every node to
keep the ledger states correctly updated.

Such a constrained programming model makes development relatively simple, equivalent to programming a
single-thread CPU and to fit everything in a single-box computer. Such a model is widely adopted and shared by
most blockchain systems and smart contract languages nowadays ever since Ethereum and the Solidity language
were introduced, such as Move [2] from Facebook Diem, Cadence [4] from Flow blockchain, Scilla [7] from Zilliqa,
etc. It works well as long as the workload of executing all transactions and maintaining the entire ledger states fit
in a single networked computer with moderate Internet connection.

1.1 Multiple Chains
Increasing DApps/addresses population and transaction volume demands higher throughput and capacity of
smart contract execution and ledger state storage. However, it is capped by the computing resource a single
computer may have. A temporary workaround is to accept only crazy high-end computers with insane high-speed
internet connection [5], at the cost of sacrificing decentralization.
Dividing and distributing workload to multiple computers is a time-tested design philosophy to achieve the

scalability of a computing system. As for blockchain systems, leveraging multiple blockchains and distributing
workload of the entire network across different instances of blockchains is the fundamental solution in the long
run, so that the infrastructure is able to scale continuously as the crypto ecosystem grows.

Figure 1 illustrates typical structures of multi-chain blockchain systems. Blockchain sharding employs multiple
chains and one-per-shard with synchronous chain growth (a) (e.g. NEAR [9]), or asynchronous chain growth
(b) (e.g. Monoxide [11]). In blockchain sharding, chains in all shards are functionally equivalent but dealing
with different non-overlapped set of transactions and ledger states. All smart contracts are deployed and can be
executed in every shard, while transactions, addresses and ledger states are divided and distributed in different
shards with a deterministic and non-overlapping approach.

In figure 1(d), a blockchain system is distributed in a heterogeneous way with application-specific Parachains
(e.g. Polkadot [12] and OHIE [13]). Each smart contract is deployed, and only deployed, in a dedicate chain (a
Parachain), such that all transactions, addresses and ledger states involving the smart contract will be, and only
be, handled in the corresponding Parachain. Every Parachain is unique and can be totally unrelated to other
parachains in the system unless cross-contract invocations are made.

…

…

…

…
 …

…
 …

…
 …

Shard 1

Shard 2

Shard n

…

…

…

…

…

…

…
 …

(a) Synchronous Sharding

…

…

…

…
 …

…
 …

…
 …

Shard 1

Shard 2

Shard n

…

…

…

…

…

…

…
 …

(b) Asynchronous Sharding

Relay Chain

… … …

…

…

…

Parachain A

…

…
…

Parachain B

Parachain C
(d) Cross-chain Bridging with Shared Consensus

…

… Blockchain A

Blockchain B…

…

…

…

(c) Cross-Chain Bridging

Block Relay across Chains

Fig. 1. Typical structures of multiple chains employed in blockchain systems.

PREDA: A Distributed Programming Model for General Smart Contracts on Sharded Blockchains and Cross-Chain Bridges • 1:3

Scalability is achieved by allowing a node to participate in only a few, typically one, shards (or Parachains) in
the system and carries a fraction of the workload in the entire network for ledger state updates and transaction
executions. All these nodes jointly have all shards well maintained and support the workload of the entire network.
As the entire network is divided to more shards and more nodes participate into shards, the total throughput and
capacity of the network scales out without limit.

Despite the scalability, interoperability of different blockchain systems is also an important scenario of dealing
with multiple chains as illustrated in (c). In a cross-chain bridge, assets in one blockchain can be moved or warped
to its representation across different blockchain systems with totally different set of addresses, smart contracts
and programming languages. Parachains system mentioned above can also be regarded as a collection of multiple
independent blockchains plus a common shared cross-chain bridging infrastructure (shown as the Relay Chain
in (d)).

There are other types of multiple chain structures. Zilliqa with COSPLIT [10] splits and distributes transaction
executions on different chains, but the ledger state storage is not divided. Each node on the blockchain must store
all addresses and states, and a state synchronization step is required after each epoch. Prism [1] decomposes the
blockchain into multiple chains based on functionalities, such as chains for block proposals, voting, final block
creation, etc. The execution of each transaction goes through all chains and each blockchain node must store all
states.

1.2 Functional Relay
Cross-chain payments or assets moving in a multi-chain system are essential and inevitable as discussed in
many existing works [6, 11]. Such behavior can be implemented as the execution of a dual-step operation of
withdraw and deposit (line 7 and 8 in Listing 1) in each involved chain respectively, which is called Relay, or Relay
Transaction. Various methods have been developed to ensure the security of relay that the first step (withdraw)
has been done successfully in the originate chain with a proof that can be verified in the destination chain to
carry on the second step (deposit) with confidence.

PREDA generalizes the way of expressing cross-chain workflow in smart contracts to Functional Relay, which
is programmable and flexible with the prerequisite that the security of relay across chains is ensured by the
underlying consensus system. Functional relay enables any function invocation (an initiate function) executed on
one chain to trigger one or more subsequent asynchronous invocations of functions (relay functions) in other
chains.
A functional relay is emitted by an attempt of invoking a cross-scope function and is encapsulated as a

functional relay transaction along with auxiliary metadata helping relay verification in the destination chain. The
transaction, denoted as ⟨P,Ω𝑑 , _, 𝜙⟩, carries:

• Relay Proof P: A piece of information generated by the originate chain that proves the initiative of
the functional relay invocation, which can be verified in the destination chain. Typically it is a path in
the Merkle tree composed by the shared consensus system like in sharding systems (a,b) and Parachain
systems (d), or a digital signature by the controller of cross-chain bridges (c).

• Target Scope Ω𝑑 : A context specifying the subset of the ledger states where the specified function to
be executed within. It can be identified by an address that implicitly specifies the destination chain in
sharding system (a,b), or an explicit identifier of the destination chain in cross-chain bridging system (c,d).

• Function _: An identifier of a specific function of a specific smart contract, defined in scope Ω𝑑 , to be
executed in the destination chain, which is deployed beforehand. Note that the initiative function executed
in the originate chain and the relay function executed in the destination chain can be implemented
in different programming languages and executed by different execution engines as long as their type
systems for function augments are compatible and inter-convertible.

• Arguments 𝜙 : The serialized data of arguments for invoking the function _ in the destination chain
using the type system and execution engine in the destination chain.

Similar to the processing of normal transactions (issued and signed by addresses), functional relay transactions are

1:4 • PREDA Dev Team, devteam@preda-lang.org

issued, when a transaction is executed in the originate chain, and are transmitted to the broadcast network of the
destination chain, where they reside in the mempool and wait to be confirmed by a future block of the destination
chain. The major difference between this and a normal transaction is that a functional relay transaction is verified
based on the relay proof rather than a digital signature of the sender.

1.3 Programmable Scopes
Scope Ω is the context of smart contract function execution, defining a collection of state variables and functions
available for access and invocation. In single-box blockchain systems as described in section 1, scope is trivial. It is
always the entire ledger state, including the states of all addresses (e.g. line 3 in Listing 1) and functions of all smart
contracts. In many multi-chain systems, the entire ledger state is divided by address (e.g. Blockchain Sharding) or
by smart contract (e.g. Parachain) to distribute the workload on multiple chains. However, such division is fixed,
hardcoded and coupled with the underlying blockchain system. Due to the lack of programmability, general
smart contracts cannot be implemented in a simple and readable way, which limits the applications of these
systems.
PREDA generalize the basic division idea to programmable scope, or scope, with the programmability that

division schemes can be defined in smart contracts by developers. A ledger state can be divided by any data types
besides address, and be instantiated in customized ways. In multi-chain systems, a scope Ω𝑖 ⇒ ⟨S𝑖 , F𝑖 ,Ψ𝑖⟩, 𝑖 ∈ Φ
is a subset of the entire ledger states with:

• Identifier Space Φ: The set of all possible values {𝑖} can be used to identify a scope, typically all addresses.
It can also be all values of a particular data type such as integers, strings or hash values.

• Ledger States S: A subset of non-overlapping ledger states that are read and written sequentially.
• Functions F : A subset of smart contract functions that are restricted to only accessing ledger states
S and only invoking functions F in the same scope. Any cross-scope access or invocation requires
asynchronous functional relay.

• Chain Ψ: A chain that hosts states S and sequentially executes transactions carrying invocations of
functions in F .

Different scopes never share statesS and may share entire, partial or no functions F of another scope in various
designs of multi-chain systems, which implies different programming flexibility, synchronization mechanisms
and scalability. Different scopes may also share the same chain Ψ, or have their own dedicate ones. The logic
behavior in a scope can be completely defined with states S and functions F , while we factor the chain Ψ into the
formula though, so that the performance of cross-chain smart contracts can be better analyzed. Any functional
relay across chains introduces a communication overhead and mempool awaiting delay that can not be ignored.

Table 1 lists division schemes of scopes in typical multi-chain systems. In blockchain sharding, smart contracts
are not divided. Homogeneous scopes are instantiated for each scope identifier based on the same definitions
of states and functions, and so do shards, which achieves best scalability that each smart contract is possible
to leverage the throughput and capacity of all chains in the entire network, but has most narrowed scope. In
Parachain system, each scope is corresponding to a specific smart contract, which is heterogeneous that each scope
has unique definition of ledger states and functions by the contract. Such design exhibits better programming
flexibility with contract level scope but restricts scalability by limiting the throughput and the capacity of a
single chain to be utilized. PREDA model provides programmability of the scope division scheme, which can be
customized and optimized according to the data access pattern and the predicated runtime behavior of cross-chain

Ledger States Smart Contracts Chain

Sharding System Homogeneous Instance per-Address
Homogeneous Instances per-Shard No Division per-Shard

Parachain System Heterogeneous Instance per-Contract per-Contract
Cross-chain Bridge Heterogeneous Instance per-Chain per-Chain

Table 1. Division of Ledger states, smart contracts and broadcast network in typical multi-chain systems.

PREDA: A Distributed Programming Model for General Smart Contracts on Sharded Blockchains and Cross-Chain Bridges • 1:5

workflow of smart contracts. Customized scope division enables better trade-off between programming flexibility
and scalability.

2 PROGRAMMING MODEL
PREDA programming model is a distributed, functional, scope-oriented and high-level approach for defining
and implementing inherently-parallelized smart contracts that runs on multi-chain blockchain systems. Ledger
states and functions are defined within scopes, each is hosted by an underlying chain. Cross-scope interactions
are described using functional relay semantics that ensures the availability of context of any function invoked
across chains asynchronously. Programmable scope schemes provides a systemic and expressive way to design
the division scheme of ledger states of a smart contract that can be transparently distributed with inherent
parallelization by the underlying multi-chain system.

2.1 Scope-Oriented Smart Contracts
In each smart contract, its states S𝑖 and functions F𝑖 are defined within a scope Ω𝑖 (𝑖 ∈ Φ) as described in section
1.3. Any function allows direct access of states and synchronous invocation of functions only within the current
scope. Any reading/writing of states, invocation of functions in another scope Ω 𝑗 must to be realized using
functional relay in an asynchronous manner as described in section 1.2.

Each scope is allowed to have its own definition of states and functions, which is typically the case of cross-chain
bridging system and Parachain system. While for blockchain sharding systems, scopes can also be instantiated
per scope identifier 𝑖 based on a declaration of scope class as ⟨S, F ⟩. Every scope instantiated from the same
scope class will have the same set of functions and same state data structure, but with possibly different values.
Given a scope identifier space Φ, all scopes derived from the scope class ⟨S, F ⟩ are,

Ω𝑖 ⇒ ⟨S, F ,𝛹 (𝑖)⟩ , 𝑖 ∈ Φ. (1)

Here, identifier scatter function𝛹 (𝑖) is an analytic and deterministic mapping from scope identifier to the index of
a particular chain in a multi-chain system, assuming chains are named by integer numbers as index.
For example, scopes of all addresses can be represented by a scope identifier space Φ of all addresses (e.g.

20-byte hash of public key in Ethereum), which is typically an ad-hoc predefined fixed states division hardcoded
in the underlying sharded blockchain system. PREDA model enables programmable definition of schemes of
ledger state division identified by more data types besides address, and makes state division decoupled with the
design of the underlying blockchain system.

2.2 Distributed Scopes
For state storage and transaction processing, a scope is entirely located in one, and only one specific chain Ψ,
which is determined by the identifier scatter function𝛹 (𝑖), 𝑖 ∈ Φ for sharding systems. PREDA model doesn’t
define such a function and leaves the definition to the underlying blockchain system, which is usually coupled
with the configuration, architecture and data format of the multi-chain system. The identifier scatter function

Global Scope

Shard Scope #0

Scope A #0

Scope A #1

Scope A #b-1

… scopes of more identifiers

Address #0

Address #1

Address #a-1

…
more
scope
spaces

Shard Scope #1

Scope A #b

Scope A #b+1

Scope A #d

… scopes of more identifiers

Address #a

Address #a+1

Address #c

…
more
scope
spaces

… …
more

shards

Shard Scope #n-1

Scope A #x

Scope A #x+1

Scope A #z

… scopes of more identifiers

Address #w

Address #w+1

Address #y

…
more
scope
spaces

Shard #0 Shard #1 Shard #n-1

Fig. 2. Entire ledger states divided by programmable scopes in a sharded blockchain system. Each block represents a scope
built-in (Shard and Global), or instantiated based on scope space defined in smart contracts (Address and ScopeA) with
various types of scope identifier. Instantiated ones are scattered throughout all shards.

1:6 • PREDA Dev Team, devteam@preda-lang.org

𝛹 (𝑖) is required that the function can be analytically evaluated without heavy computation nor relying on any
allocation/assignment service. It is highly recommended that an identifier scatter function has high expectation
to have a balanced distribution across chains. Using truncated hashing on data representation of scope identifiers
𝑖 can be the typical solution in many cases. In cross-chain bridges, identifier scatter function𝛹 (𝑖) is unnecessary
since scope identifier 𝑖 is also the identifier of blockchains involved in the bridging system.

Address Scopes are defined by lettering Φ be all possible address values in the network, which is frequently
used. In PREDA model, it is recommended to have address scope built-in and predefined, which achieves better
compatibility with existing multi-chain systems based on ad-hoc per-address states division architecture.

Shard Scopes ¥Ω𝑠 can be defined by lettering Φ be the set of all shard indices 𝑠 in blockchain sharding systems.
In PREDA model, these scopes are built-in and predefined, but the expressiveness of referring to a specific shard
is disabled. PREDA model aims to minimize the exposure of details of the sharding structure (e.g. total number of
shards or index of the current shard.) so that a smart contract can be ported to different sharding systems and
adapted to dynamic chain scaling without code modification. Similarly, Chain scopes can be defined by lettering Φ
to the set of identifiers of blockchains/Parachain for cross-chain bridging systems. Explicitly referring a specific
chain in cross-chain bridging systems is allowed and necessary. We refer any scopes derived from equation 1
excluding shard scopes as conventional scopes.

Global Scope
⌢

Ω is a special built-in scope, which is a logically global singleton in the entire network. Exceptional
to the above discussion about programmable scopes, global scope is not a division of the ledger states, instead, it
has a fully duplicated instance maintained by every chain, and synchronized throughout the entire multi-chain
system. Global scope carries states that must be available to all chains and all scopes. Transaction processing for
global scope can not be scaled nor parallelized, which suggests only necessary ledger states should be defined in
global scope and minimize transaction traffic involving global scope.

2.3 Inherent Parallelization
Every chain in a multi-chain system is logically a sequential state machine. Transaction executions of each block
drive ledger states transition by sequential invocation of smart contract functions carried by these transactions.
In a multi-chain system, each sequential state machine (a chain) operates independently, and jointly forms a
parallel computing system with message-passing (relay transactions) for inter-thread coordination.

PREDA model provide no explicit primitives for local multi-threading or distributed parallelization. Instead, it
leverages existing parallelism of the multi-chain system by distributing ledger states and transactions across these
chains. The case of blockchain sharding system is illustrated in figure 2. Scopes distributed in different shards are
operated in parallel inherently (e.g. Address#0 and Address#a), while transactions involving a specific scope
should still be executed sequentially.

Intra-chain Parallelism with local multi-core processors can also be leveraged besides the cross-chain paral-
lelization, by creating multi-threaded workers for transaction execution. Scopes can be scattered to these local
threads to transparently accelerate the execution of a block carrying a considerable number of transactions,
which achieves local parallelization without bringing additional complexity to the programming model. Identifier
scatter function𝛹 (𝑖) can be reused here for distribution across local thread, by referring to thread index instead
of shard index.

2.4 Functional Relay
Any function invocation across chain must be facilitated by a functional relay transaction ⟨P,Ω𝑑 , _, 𝜙⟩ as
described in section 1.2, even if the invocation across scopes are in the same contract, or the two scopes are
actually distributed in the same chain. On the other hand, PREDA model allows direct states access and function
invocation across smart contracts within the same scope.

PREDA: A Distributed Programming Model for General Smart Contracts on Sharded Blockchains and Cross-Chain Bridges • 1:7

Broadcast
Network of
Chain

…

…

Chain

Chain

…

…

…

…

Mempool
in Chain

Outbound Relay
Transaction

Inbound Relay
Transaction

Confirmed Inbound
Relay Transaction

1

2
3

4

Fig. 3. Workflow of a functional relay transaction emitted from the
originate chain 𝑎 and confirmed in the destination chain 𝑏.

PREDA model provide primitives to make
asynchronous invocation by specifying the
destination scope, function and function aug-
ments as _(𝜙 ;Ω𝑑) for conventional scopes and
_(𝜙 ;

⌢

Ω) for the global scope. When transac-
tion execution reaches such a primitive, a func-
tional relay will be emitted and collected. After
all transactions in the block are executed, all
collected functional relay will be encapsulated
as functional relay transactions. Each one will
be dispatched to the destination scope and con-
firmed there to realize the function invocations
in the destination scope. As illustrated in fig-
ure 3, a functional relay transaction undergoes
following steps to complete an asynchronous
invocation across scopes in different chains:

(1) A functional relay transaction is emitted during block execution in the originate chain 𝑎, as outbound
relay transaction.

(2) Underlying system transfers the transaction to any node in the broadcast network of the destination
chain 𝑏, which is identified by𝛹 (𝑑).

(3) A node in the destination broadcast network receives the functional relay transaction, as inbound relay
transaction, and stored in the mempool of chain 𝑏. The inbound relay transaction awaits there to be picked
by a future block in chain 𝑏.

(4) Finally, a new block in chain 𝑏 confirmed the inbound relay transaction and concludes the workflow.

PREDA model reuses existing modules (the broadcast network and the mempool), which are supported in most
multi-chain systems, to realize the workflow by introducing a few new metadata in transaction data structure and
additional steps to transaction processing. PREDA model rely on the underlying consensus system to generate
the relay proof P at the originate chain and verify it at the destination chain. In programming model level, it is
assumed that relay proof generation and verification is transparently and correctly handled.

Functional Relay Broadcast _(𝜙 ; { ¥Ω𝑠 }) 1 is a dedicate primitive for invoking the same function with the same
augments in every shard scope without explicitly specifying a particular shard. In blockchain sharding systems,
the destination scope in a functional relay can be the global scope or any conventional scopes except shard scopes.
It is not allowed to explicitly specify a shard scope as the destination of a functional relay since PREDA model
intends to hide the details of sharding structure from programming level. If invocations of a function in every
shard scope are desired, the functional relay broadcast serves the purpose. Similar to functional relay, functional
relay broadcast can be emitted from any scope including shard scopes. A functional relay broadcast is logically
equivalent to emitting multiple functional relay transactions per-shard with the same invocation parameters.

As a simple example, listing 2 illustrates the code snippet of a smart contract defining a token and the transfer
functionwith PREDAmodel. Pseudo-codes of scope and relay are primitives to define a scope class (line 3-16) and
to emit a functional relay (line 10-13). Line 10-13 also defines a Lambda function with amount argument captured
to perform the deposit in the destination scope. Scopes will be instantiated for every address as formulated in
equation 1, based on the definition in line 3-16. Each has a variable balance and a transfer function with a
Lambda function embedded. The execution is initiated in the scope of sender’s address (@msg.sender, implicitly
specified), which attempts a withdraw. If succeeded, the relay primitive (line 10) emits a functional relay and
concludes the execution in sender’s scope. Then, asynchronously in recipient’s scope (@receiver), the Lambda
function will be invoked and completes the workflow with a deposit.
1{ ¥Ω𝑠 } is a fixed notation to indicate the broadcast behavior instead of specifying an actual destination scope.

1:8 • PREDA Dev Team, devteam@preda-lang.org

1 contract ERC20Basic is IERC20

2 {

3 scope @address

4 {

5 uint256 balance;

6 function transfer(address receiver , uint256 amount) ...

7 {

8 require(amount <= balance);

9 balance = balance - amount;

10 relay @receiver (^ amount)

11 {

12 balance = balance + amount;

13 }

14 return true;
15 }

16 }

17 }

Listing 2. The code snippet of transfer function in an ERC20 contract rewritten in extended Solidity with PREDA model

2.5 Colocated Scopes
As mentioned in section 2.4, invocation across scopes are facilitated by cross chain relay transactions because
the target chain (where the target scope is located) might be different from the source chain and the node is not
participating in it. If it is guaranteed that any node participating in the source chain also participates in the target
chain, it would enable an optimization, that the actual relay processing workflow be bypassed and replaced with
direct invocation by the execution layer of the chain, because the target scope is accessible within the same node.
In such a case, we call the target scope a colocated scope of the source scope.

As described in section 2.2, shard scope and global scope have guaranteed colocation with conventional scopes
by design, which can be categorized based on how such colocation is shared:

• Synchronous Shared Colocation. The shard scope of a chain is a colocated scope of every conventional
scope that is located in that chain. Since it’s within the same chain as those conventional scopes, they are
operated synchronously.

• Asynchronous Shared Colocation. Because the global scope requires all nodes in the multi-chain
system to participate in, it is a colocated scope of every other scope. It is hosted by a dedicated global
chain, so the other scopes and the global scope are operated asynchronously. (Section 3.3)

PREDA model allows direct function invocation and states access (read/write) from a scope to another scope that
is colocated synchronously shared. While, for asynchronous shared colocation, direct invocation is restricted to
const functions and direct states access is read-only. Complete details of direct access across scopes are listed in
Table 2. In blockchain sharding system, only functional relay broadcast is allowed toward an invocation in shard
scope, denoted as R/b.

Originate
Destination

Global Shard ConventionalRead Write Current Foreign
Global - - R/b R
Shard D R - R/b R

Conventional D R D R/b R
† D: direct access/invocation is allowed, R: a functional relay is required.

‡ R/b: only a functional relay broadcast is allowed without specifying any specific shard.

Table 2. Rules for state access and function invocation across different scopes according to different situations of scope
colocation. Conventional refers to all scopes derived from equation 1 excluding shard scopes.

PREDA: A Distributed Programming Model for General Smart Contracts on Sharded Blockchains and Cross-Chain Bridges • 1:9

Allowing direct writing and invocation of non-const function to colocated shard scope will break the inde-
pendency of scopes within a chain. The scope dependency assumed by intra-chain parallelization described in
section 2.3 will be violated. Thus, intra-chain parallelization can only be applied to a set of transactions without
direct write access to the shard scope.

3 HOSTING MODEL
Smart contracts based on PREDA model execute on multi-chain systems with fixed number of chains (cross-chain
bridging), configurable number of chains (blockchain sharding) or infinite number of dynamically allocated
chains (Parachain). These chains are assigned with fixed names as labels, consecutive integers or hash values,
a.k.a. chain identifiers which is agreed on and recognized by both PREDA model and the underlying system.

For every chain in the multi-chain system, PREDA model makes similar assumptions to a single-box blockchain
system (e.g. Ethereum). Every chain has following essential components regardless of the actual consensus
algorithm employed:

• A Chain of Blocks generates new block periodically with fixed, or fixed expectational, interval. Each
block carries an ordered listed of unique transactions with limited total data sizes, or total computation
cost for execution (e.g. Gas).

• A Storage for Ledger States provides efficient immediate read and write of state data.
• An Execution Engine runs deployed smart contracts as invocations made by transactions and updates
ledger states according to execution outputs.

• A Mempool stores, in memory, unconfirmed transactions to be picked up by future new blocks.
• A Broadcast Network is a peer-to-peer network that replicates legitimate transactions and blocks across
nodes.

In a multi-chain blockchain system, each chain has its own unique dedicate instances of the five components
described above. In addition, PREDA model makes following assumptions about a multi-chain system:

• Non-overlapping Workload: Any transaction will be, and only be, confirmed and executed by a single
chain. An address or any piece of ledger state will be, and only be, hosted and updated by a single chain.

• Deterministic Distribution: A transaction, an address or any piece of ledger state will always be
associated with a specific chain, given a particular configuration of the multi-chain system.

• Proven Relay: A relay proof can be generated from a block of one chain, and be verified by another
chain when the corresponding relay transaction is received.

• Voluntary Relay Broadcast: A relay transaction with correct proof will be replicated across nodes and
stored in mempool voluntarily like normal transactions being done.

3.1 Execution Engine
PREDA model assumes a state-less execution engine like EVM, which executes smart contract functions, reads
the ledger states as constant and produces a collection of modified states without directly writing to the ledger
states. An execution context is exposed to the function as a runtime library, which provides ledger states access,
relay emission and auxiliary information from the transaction/block being executed like the block height and the
address of transaction sender.
Interfaces of the execution engine has immediate interaction with the PREDA model, and subject to a few

modification to reflect the new data model of the divided ledger states with programable scopes and the new
behavior of emitting functional relay transactions.

The ledger states access requires a scope identifier 𝑖 as an addition to the pair of a smart contract address 𝑠 and a
variable location 𝑣 . The variable location 𝑣 will be specific to the combination of the scope and the smart contract
⟨𝑠, 𝑖⟩, instead of just to the smart contract 𝑠 . In a function of a smart contract, variables are referenced without
specifying the scope identifier, instead, the current scope is implied. This is a typical behavior in object-oriented
programming models like the this pointer in a C++ object, which requires the current scope identifier be part
of the execution context. Listing 2 line 9 and 12 illustrates such behaviors as an example. The state variable
(balance) is referenced without explicitly specifying an address, which is actually implied as the current scope
(@msg.sender in line 9 and @receiver in line 12).

1:10 • PREDA Dev Team, devteam@preda-lang.org

A new interface shall be introduced for functional relay emission by specifying the destination scope identifier
𝑑 , the function _, its augments 𝜙 and a gas fee redistribute weight 𝜌 . Implementation of the interface is required
to collect all relay emissions, encapsulate each to a relay transaction and forward them to the broadcast network
of the destination chain. Forwarding of relay transactions can be asynchronous and is tolerate to delay. The gas
fee redistribute weight 𝜌 determines how much gas fee will be offered to the relay transaction to be emitted,
which divides up the residue 𝑔 of the gas fee after the current execution. Actual gas fee 𝑔𝑟 of a relay transaction 𝑟
out of total 𝑏 relay(s) being emitted is determined as

𝑔𝑟 = 𝑔 · 𝜌𝑟∑
0≤𝑥<𝑏 𝜌𝑥

(2)

3.2 Transactions and Blocks
Besides information about the invocation (the function _ and its augments 𝜙) and the metadata like gas price/limit,
a transaction carries the digital signature by the sender, or by the controller of the cross-chain bridge. With
PREDA model in blockchain sharding systems, a transaction shall be able to alternatively carry a relay proof for
authenticity other than a signature.
PREDA model requires the destination scope identifier to be carried with relay transactions in blockchain

sharding system, while the destination scope of a normal transaction can be derived from the public key in
the signature data. The destination scope is implied for cross-chain bridge based on the blockchain it is sent to.
Parachain system supports such information already for relay transactions.

A block carries an ordered list of confirmed transactions. In addition to normal transactions, confirmed relay
transactions will be included as well, which forms an ordered list of normal/relay transactions mixed. A block
carries an aggregated proof (e.g. a Merkle tree root) of all transactions being confirmed in most blockchain
systems. In addition to that, a block may also carry an aggregated proof for all relay transactions emitted when
executing all transactions confirmed in the block.

3.3 Global Scope
Global scope is optional but particularly useful to aggregate and publish information, which involves or to be
made available to all programable scopes and all chains in system, for example, collecting votes and deploying
smart contracts in a blockchain sharding system. Global scope is a special scope that requires all nodes in the
entire multi-chain system to participate in to maintain ledger states and execute transactions of global scope. It
can be hosted by a dedicate chain, global chain, running on every node in parallel to the existing multi-chain
system, which makes global scope available to any programable scopes. Besides the different node participation
model, the global chain works exactly in the same way as existing sharded chains.

As discussed in section 1.1, synchronous sharding (figure 1a) will have an additional shard dedicate for global
scope in parallel to existing shards and provide a synchronized consistent view of the global scope across all
nodes in the entire network. Appendix A presents a reference design of such a synchronous sharding system
with consistent view of global scope. Similarly asynchronous sharding (figure 1b) also have such a global chain
while a consistent view cannot be guaranteed due to its asynchronous nature of sharded chain growth.

4 CONCLUSION
This article presented a novel programming model, PREDA, for the development of general smart contracts
on multi-chain blockchain systems, especially for homogeneous sharding systems. PREDA model divides the
sequential state machine of the entire ledger state into a great number of independent sequential state machines,
scopes, which can be arbitrary distributed in any chain in a multi-chain system to leverage the throughput
and capacity of all chains. Scope-based division decouples the design of a distributed smart contract from the
underlying multi-chain architecture, and ease the development of general smart contracts on parallel multi-chain
systems.

PREDA model presents a scope-oriented programming paradigm with programmable scope schemes to control
state division and define the actual sequential state machine within each scope, and functional relay semantics to
describe the cross-scope workflow to facilitate the interaction and coordination across scopes. PREDA model is

PREDA: A Distributed Programming Model for General Smart Contracts on Sharded Blockchains and Cross-Chain Bridges • 1:11

neutral to different types of consensus algorithms and architectures of multi-chain systems and can be applied to
sharded blockchain systems as well as Parachain systems and cross-chain bridges.

Appendix A SYNCHRONOUS SHARDING WITH GLOBAL SCOPE
A synchronous blockchain sharding system works best with the proposed PREDA model, which provides full
features with globally synchronized consistent view of global scope at every block height. A reference design of
such a system is illustrated in figure 4 by extending a single-chain architecture that most nowadays blockchain
systems have.

A.1 Multi-Chain Structure
The existing single-chain as well as the ledger states, execution engine, mempool and the broadcast network
will all serve transactions in global scope only, named as 𝑔. The system is then extended by allocating additional
2𝑘 sharded chains, named as 0 to 2𝑘 − 1, with their own dedicate instances of ledger states, execution engine,
mempool and the broadcast network which handle transactions of programable scopes distributed in each chain
only. Parameter 𝑘 is the sharding order controls the overall size of the sharding system, exponentially, which
makes total number of chain to be integral power of two. The identifier scatter function𝛹 (𝑖) discussed in section
2.2 can thus be simply taking first 𝑘 bits from the hash of scope identifier and achieve a good balanced distribution
across chains.
As a synchronous sharding system, for each new block generated in global chain, one, and only one, block

per sharded chain will be generated, which results in aligned block heights for all chains in the system. In any
node participated in one or more sharded chain(s), the block of global chain at height ℎ shall be received and
executed after any block at height ℎ − 1 is executed and prior to any block at height ℎ in any sharded chain,
which provides a consistent view of global scope at height ℎ throughout the entire network when executing any
block in sharded chains.

A.2 Data Structures
A sharded chain doesn’t have own consensus proof, instead it inherits consensus proof from the global chain.
Figure 5 illustrate key data structures that extend a single-chain blockchain system with sharded chains. Existing
data structures, block header and block body, of the single-chain system are denoted here as consensus header and
global block. The consensus header carries the proof for a validated consensus proof (e.g. the PoW nonce, or the
aggregation of PoS signatures) and the hash pointing to the global blocks \𝑔 , which carries actual transactions in
global scope being confirmed. The two data will be broadcasted in the global broadcast network that all nodes in
the network will receive those regardless of the sharding division. Every node thus has the ledger states of the
global scope and keeps updated.

…

…

…

…
 …

…
 …

…
 …

…
 …

Shard 0

Shard 1

Shard 2k-1

…
 …

… Global Shard

Global Blocks

Sharded Blocks

Pointing to
Previous Block

Proof for
Sharded Block

 h-2 h-1 h h+1 h+2…

Fig. 4. A reference design of synchronous blockchain sharding system with the global scope.

1:12 • PREDA Dev Team, devteam@preda-lang.org

Shard a

…
 …

 …
 …

 …
 …

Shard b

Inbound Relay Txn Id
… …

Inbound Relay Txn Id
… …

Inbound Relay Txn Id

Transaction Id
… …

Transaction Id

Merkle Tree Path to 𝜃

Shard Order/Index

Sharded Block 𝜃b

b

Inbound Relay Txn Id
… …

Inbound Relay Txn Id

Transaction Id
… …

Transaction Id
… …

Transaction Id Hash of Previous Master Block

Root of Merkle Tree 𝜣
Sharded blocks in all shards

Root Merkle Tree 𝜰
All outbound Relay Txns from all shards

Consensus Header Shard Order/Index

Height of Originate Block

Position of in Master Block’s
Outbound Relay Txn List

Merkle Tree Path to

Invocation Information

Relay Transaction

…
 a

…

Merkle Tree Path to 𝜃 a …
 …

 …
 …

 …
 Merkle Tree 𝜰

of Outbound Relay Transactions from all Shards

Shard Order/Index

Sharded Block 𝜃
Merkle Tree 𝜣

of Sharded Blocks from all Shards

a

Relay Transaction Forwarding

Relay Transaction Id
… …

Relay Transaction Id
… …

Relay Transaction Id

Outbound Relay List

Hash of Txn Block 𝜃
in global scope

Global Block 𝜃g

g

Fig. 5. Metadata in block data structures for the workflow of a functional relay.

To extending the global chain with sharded chains, two additional aggregated proofs (𝛩 and 𝛶) are introduced
and embedded in the consensus header at every block height to prove validities of all newly generated sharded
blocks and emitted relay transactions at that height ℎ.

• A Merkle tree𝛩 is built by taking hashes of 2𝑘 sharded blocks at height ℎ of all chains. The Merkle tree
root will be embedded in the consensus header so that a sharded block \𝑠 can be verified in any sharded
chain.

• A Merkle tree𝛶 is built by taking hashes of relay transactions emitted by blocks at height ℎ of all sharded
chains to facilitate functional relays. Embedding the root of the Merkle tree 𝛶 in every consensus header
enables validation of any inbound relay transactions received in the global chain or in any sharded chains,
by checking upon the Merkle root carried by the consensus header at the emitted block height of a
particular relay transaction.

A.3 Scalability
Increasing number of shards expends throughout and capacity of the entire network linearly. The additional
overhead carried in every node rises up as well. With total 𝑛 = 2𝑘 sharded chains, following overhead of data
broadcast is introduced:

• Additional Merkle Tree Roots add 32 × 2 bytes 2 to the consensus header, while it is a tiny constant
overhead independent of 𝑛.

• Sharded Block Proof is a path in Merkle tree 𝛩 and adds 32 log2 𝑛 bytes to each block, which is a
sub-linear overhead as the number of shards 𝑛 grows.

• Relay Proof carried by every relay transaction is a path in Merkle tree 𝛶 and adds a sub-linear overhead
of 32 log2 (𝑚 · 𝑛) bytes to each relay transaction. Here, 𝑚 is the average number of functional relays
emitted by each block, which is roughly constant as well.

Sharding introduce no overhead to the storage of ledger states and negatable computation cost for Merkle root
reconstruction and comparison. In summary, only logarithm sub-linear overhead is added in every node with
increasing number of shards, which allows the presented architecture well linearly scaled.

REFERENCES
[1] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. 2019. Prism: Deconstructing the Blockchain to

Approach Physical Limits. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS ’19).
Association for Computing Machinery, 585–602.

2Assuming SHA256 is employed for building the Merkle tree. Same for further items.

PREDA: A Distributed Programming Model for General Smart Contracts on Sharded Blockchains and Cross-Chain Bridges • 1:13

[2] Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer, Rain, Dario Russi,
Stephane Sezer, Tim Zakian, and Runtian Zhou. 2020. Move: A Language With Programmable Resources. https://diem-developers-
components.netlify.app/papers/diem-move-a-language-with-\programmable-resources/2020-05-26.pdf.

[3] Vitalik Buterin and et al. 2013. A Next-Generation Smart Contract and Decentralized Application Platform. https://github.com/
ethereum/wiki/wiki/White-Paper.

[4] Cadence Developers. 2020. Introduction to Cadence. https://developers.flow.com/cadence.
[5] Solana Foundation. 2022. Validator Requirements (Solana Documentation). https://docs.solana.com/running-validator/validator-reqs.
[6] Eleftherios Kokoris Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. 2018. OmniLedger: A Secure,

Scale-Out, Decentralized Ledger via Sharding. In Security and Privacy (SP), 2018 IEEE Symposium on. Ieee.
[7] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao. 2019. Safer Smart Contract

Programming with Scilla. Proc. ACM Program. Lang. 3, OOPSLA, Article 185 (oct 2019), 30 pages.
[8] Ethereum Dev Team. 2021. Solidity Documentation. https://docs.soliditylang.org/en/latest/.
[9] The NEAR Team. 2022. The NEAR White Paper. https://near.org/papers/the-official-near-white-paper/.
[10] The Zilliqa Team. 2017. The ZILLIQA Technical Whitepaper. https://docs.zilliqa.com/whitepaper.pdf.
[11] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale Out Blockchain with Asynchronous Consensus Zones. In Proceedings of the 16th

USENIX Symposium on Networked Systems Design and Implementation (NSDI ’19). USENIX Association, 95–112.
[12] Gavin Wood. 2017. Polkadot: Vision for a Heterogeneous Multi-chain Framework. https://polkadot.network/PolkaDotPaper.pdf.
[13] Haifeng Yu, Ivica Nikolić, Ruomu Hou, and Prateek Saxena. 2020. OHIE: Blockchain scaling made simple. In Proceedings of the 2020 IEEE

Symposium on Security and Privacy (SP ’20). IEEE, 90–105.

https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-\programmable-resources/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-\programmable-resources/2020-05-26.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://developers.flow.com/cadence
https://docs.solana.com/running-validator/validator-reqs
https://docs.soliditylang.org/en/latest/
https://near.org/papers/the-official-near-white-paper/
https://docs.zilliqa.com/whitepaper.pdf
https://polkadot.network/PolkaDotPaper.pdf

2The PREDA Language
A Distributed Programming Language for General Smart Contracts on
Sharded Blockchains and Cross-Chain Bridges

PREDA DEV TEAM

PREDA, (Parallel Relay-and-Execution Distributed Architecture), is a novel programming model for general smart contracts
dealing with multi-chain blockchain systems, in which logic execution and ledger states are partitioned and distributed across
chains. In this document, we introduce the core features of the PREDA programming language with code examples.

The PREDA language is a high-level programming language with curly-bracket and Algol-like syntax style for general
smart contract development. It is naturally parallelized and distributed based on the proposed programming model, which
provides object-oriented scope syntax and lambda function syntax to support the two core features of the PREDA model.
The PREDA language aims to maximize the interoperability with sequential, non-distributed programming languages (e.g.
Solidity), which allows cross-language invocation with unifies type system and asynchronous calls to/from languages with
sequential programming model.

Compilation system and execution engine of the PREDA language is implemented as compiling to intermediate representa-
tion, and then building to platform-specific native binaries or virtual machine bytecodes. Solidity compiler and Ethereum
Virtual Machine are integrated as parts of the system to realize the interoperability and cross-language compilation. Compila-
tion system generates function symbols and unified argument serialization, which enable cross-language invocation and relay
transaction composition based on functional relay semantics.

1 SCOPES AND RELAYS
The PREDA programming language provides syntax to decompose states of a smart contract into scopes with
different synchronization requirements within- and across-chains/shards, which enables state sharding for
general smart contracts rather than payment contracts. The PREDA language also provides syntax to decompose
execution flow within a contract function into multiplemicrofunctions that are relayed and executed in different
shards based on their data dependencies of states in different scopes.

1.1 Built-in Scopes
PREDA has three built-in scopes, i.e., global, shard and address. They correspond to the data partitioning
structures in sharded blockchains. Programmers specify the scopes of the contract variables, and the underlying
blockchain system initiates and executes contract functions on the scopes accordingly:

• Global scope is used to define common contract states that must be shared and synchronized by all
shards. A global scope state is effectively a singleton that is available throughout the network. In addition,
all deployed contracts and their codes belong to the global scope. A contract can import and interpret any
function from another deployed contract.

• Shard scope is used to define common contract states within a shard, but not specific to a user. A shard
scope state must be instantiated and updated independently in each shard.

• Address scope is used to define contract states for each user. An address scope state is initiated and
updated individually in each address. This is the finest granularity a contract can expose to the underlying
system.

Author’s address: PREDA Dev Team, devteam@preda-lang.org.

2:2 • PREDA Dev Team, devteam@preda-lang.org

From the perspective of object allocation, the global scope is the equivalent of a conventional smart contract.
Everything defined in the global scope has an instance on all blockchain nodes and the instances are consistent
globally. The shard scope defines a state that has one instance on each blockchain node of the shard and the
instances are consistent in the shard. The address scope defines a state that has one instance for an address and
only blockchain nodes belonging to the same shard that have the address have the instances.

The keywords “@global”, “@shard”, and “@address” are used before variables and functions to define their
scopes as below. Note that when a state variable or function is defined without specifying a scope, it defaults to
“@global”.

1 contract MyContract {

2 @global uint32 numTotalAccounts; // only one instance globally

3 @shard uint32 numAccountsInShard; // one instance per shard

4 @address uint512 addressBalance; // one instance per address

5 }

Listing 1. Three built-in scopes in PREDA

1.2 User-defined Scopes
In addition to the built-in scopes, programmers can define their own scopes as “@scopeName = global by
typeName;” . It means that there is a user-defined scope named “scopeName”, which is indexed by “typeName”
on chain. The “typeName” can be one of the following by-default datatypes in PREDA: uint16, uint32, uint64,
uint128, uint256, uint512, and address. Note that even when two scopes are defined with the same “typeName”,
they are regarded as different scopes. A user-defined scope can be used after it’s defined in a PREDA program as
below:

1 contract C {

2 @myScope = global by uint32;
3 @myScope string myStr;

4 }

Listing 2. User-defined scopes in PREDA

In this example, the scope “myScope” can have up to 232 − 1 instances that are indexable by a uint32 value.
Which shard each of these instances resides in is decided by the underlying blockchain system and transparent
to the contract.

1.3 Relay
When a contract function executing in a scope needs to access data defined in another scope that the function
cannot directly access, a relay is required in PREDA. This means the transaction execution context is switched
from one scope to another but the execution logic is continued. Listing 3 shows the PREDA implementation of
the token transfer contract, which is equivalent to the Solidity function transfer. The keyword “@address” is
used to define the scope of contract variables and functions that belong to an address. The transfer function
executing at the scope of the sender address does the withdraw on the balance of the sender and then uses a
relay to call the deposit function, as the deposit is executed at the scope of the recipient address.

1 contract Token {

2 @address bigint balance;

3 @address function bool transfer(address to, bigint amount) export
4 {

5 if(balance >= amount)

6 {

7 balance -= amount;

8 relay@to deposit(amount);

PREDA Language: A Distributed Programming Language for General Smart Contracts • 2:3

9 return true;
10 }

11 return false;
12 }

13
14 @address function bool deposit(bigint amount)

15 {

16 if (amount <= 0) return false;
17 balance += amount;

18 return true;
19 }

20 }

Listing 3. Corresponding code snippet of transfer function in PREDA for ERC20 transfer in Solidity

As shown in this example, “relay” is the keyword to specify a relay statement and “@” is another keyword to
specify the destination of a relay. A formal representation of a relay is:

𝑟𝑒𝑙𝑎𝑦@𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) (1)

Comparing the code example in Listing 3 with the Solidity implementation of ERC20 token transfer contract [3],
one can find that the PREDA implementation converts the map balances in the Solidity implementation to an
integer variable balance and does not specify whose balance is as Solidity did, e.g., message sender’s balance
as balances[msg.sender]. This is because the global variable balances defined in Solidity is converted to an
address variable balance in PREDA. The execution context is switched from the sender’s address scope to the
recipient address scope with the relay statement.
Note that although PREDA doesn’t specify how to implement a relay in the underlying blockchain system, a

relay is recommended to be implemented as an asynchronous relay transaction. That is because (1) transaction is
the finest granularity of communication between blockchain nodes and almost all core modules of a blockchain,
e.g., transaction submission and propagation, block generation and verification, security mechanisms, etc., are
built upon transactions; and (2) in a blockchain, it is unknown when a transaction will be executed. In the worst
case, a transaction is discarded by blockchain nodes after an extremely long wait. The semantics of a relay must
be asynchronous.

Figure 1 shows how the PREDA model executes transactions in parallel. Assuming there are four shards 𝐴, 𝐵,
𝐶 , 𝐷 , and two user-initialized transactions 𝜑 and 𝜑 ′, which can be the transactions invoking the PREDA function
transfer shown in Listing 3. The withdraw operation 𝜌 that only involves the state in shard 𝐴 is handled by
a miner in shard 𝐴. If the account balance satisfies the cost of this withdraw operation, a block 𝑖 + 1 carrying
the transaction 𝜑 is created by the miner and appended to the chain of shard 𝐴. After that, a relay transaction
carrying the deposit operation 𝜙 is composed in shard 𝐴 and forwarded to shard 𝐵. The deposit operation 𝜙

that only involves the state in shard 𝐵 can be executed by shard 𝐵. Once the relay transaction is picked up by
another miner in shard 𝐵, operation 𝜙 is executed, concluding the complete of the transaction 𝜑 . Similarly, the
withdraw operation 𝜙 of transaction 𝜑 ′ is executed in shard 𝐶 and its deposit operation 𝜌 is executed in shard 𝐷 .
The withdraw operations on addresses in different shards can be executed in parallel and similarly to the deposit
operations.

1.4 Relays between Shard and Global Scopes
In the PREDA token transfer example (shown in Listing 3), the relays occur between address scopes. In this
subsection, we shown an example that the relays occur between the shard and global scopes. Listing 4 shows the
PREDA Ballot contract. It is functionally equivalent to the Solidity Ballot contract, but is designed to execute a
large number of voting transactions in parallel on a sharded blockchain. The PREDA implementation is quite
complex, but shows many features, e.g., relay transactions across different types of scopes. The main ideas of the

2:4 • PREDA Dev Team, devteam@preda-lang.org

Op ρ in TX φ
… …

Shard A

Op ϕ in TX φ
…

Shard B

Transaction Relaying

Block i+0 Block i+1 Block i+2 Block i+3

Block j+0 Block j+4Block j+1 Block j+2 Block j+3

Op ρ in TX φ'
… …

Shard C

Op ϕ in TX φ'
…

Shard D

Transaction Relaying

Block t+0 Block t+1 Block t+2 Block t+3

Block r+0 Block r+4Block r+1 Block r+2 Block r+3

Fig. 1. Parallel execution of transactions 𝜑 and 𝜑 ′ in different shards.

PREDA Ballot contract can be explained as below: first, the contract allows the voters to vote in different shards
based on address-to-shard mapping (by the underlying blockchain); and second, the contract accumulates the
voting results of each shard to the final voting result. The PREDA Ballot contract can avoid reading and writing
the shared contract state (i.e., the final voting result) simultaneously throughout the network, when processing
voting transactions issued by the voters. In this case, we show how voting is implemented in the shard scope and
how the final voting result is accumulated in the global scope.

1 contract Ballot {

2 struct Proposal {

3 string name;

4 uint64 totalVotedWeight;

5 }

6
7 struct BallotResult {

8 string topVoted;

9 uint32 case;
10 }

11
12 @global address controller;

13 @global uint32 current_case;

14 @global array <Proposal > proposals;

15 @global BallotResult last_result;

16
17 @global uint32 shardGatherRatio;

18 @global function shardGather_reset (){ shardGatherRatio = 0u; }

19 @global function bool shardGather_isCompleted (){ return shardGatherRatio == 0x80000000u; }

20 @global function bool shardGather_gather ()

21 { shardGatherRatio += 0x80000000u >>__block.get_shard_order ();

22 return shardGatherRatio == 0x80000000u;

23 }

24

PREDA Language: A Distributed Programming Language for General Smart Contracts • 2:5

25 @shard array <uint64 > votedWeights;

26 @address uint64 weight;

27 @address uint32 voted_case;

28
29 @address function bool is_voting ()

30 {

31 return last_result.case < current_case;

32 }

33
34 @address function init(array <string > names) export {

35 relay@global (^names){

36 for (uint32 i = 0u; i < names.length (); i++) {

37 Proposal proposal;

38 proposal.name = names[i];

39 proposal.totalVotedWeight = 0u64;

40 proposals.push(proposal);
41 }

42 current_case ++;

43 last_result.case = 0u;

44 last_result.topVoted = “ ”;

45 }

46 }

47
48 @address function bool vote(uint32 proposal_index , uint32 case_num) export {

49 if(case_num == current_case && case_num > voted_case && proposal_index <proposals.length ())
50 {

51 voted_case = case_num;

52 votedWeights.set_length(proposals.length ());
53 votedWeights[proposal_index] += weight;

54 return true;
55 }

56 return false;
57 }

58
59 @address function finalize () export {

60 relay@global (){

61 shardGather_reset ();

62 relay@shards (){

63 __debug.print(“Shard Vote: ”, votedWeights);

64 relay@global(auto shardVotes = votedWeights) {

65 for(uint32 i=0u; i<shardVotes.length (); i++)

66 proposals[i]. totalVotedWeight += uint64(shardVotes[i]);
67
68 if(shardGather_gather ()) {

69 last_result.case = current_case;

70 uint64 w = 0u64;

71 for(uint32 i=0u; i<proposals.length (); i++) {

72 if(proposals[i]. totalVotedWeight > w)

73 {

74 last_result.topVoted = proposals[i].name;

75 w = proposals[i]. totalVotedWeight;

76 }

77 }

78 }

79 }

80 }

81 }

82 }

83 }

Listing 4. The PREDA ballot contract

2:6 • PREDA Dev Team, devteam@preda-lang.org

In the address scope function init, the controller of the contract is responsible for initiating the global scope
variable proposals. This is done by issuing a relay transaction from the address scope to the global scope, which
is corresponding to broadcast a relay transaction to the network in the underlying blockchain and to initialize
the proposals and last_result variables. After the execution of the init function, the global scope variable
proposals is initialized on all blockchain nodes.

In the address scope function vote, each voter can directly read the global scope variable proposals and also
directly write the shard scope variable voteWeights, because the global scope variable is globally consistent,
and the shard scope variable is consistent in each shard. At runtime, user-initiated transactions calling the vote
function are executed by different shards based on address-to-shard mapping. Each transaction only changes the
shard scope variable voteWeights in the corresponding shard.
In the address scope function finalize, the controller of the contract issues a relay transaction from the

address scope to the global scope to reset the global scope variable shardGatherRatio and request all shards
to report the value of the shard scope variable voteWeights. Each shard then sends a relay transaction with
the value of voteWeights to the global. At the global scope on each blockchain node, the partial voting results
voteWeights are accumulated to the final voting result proposals. After receiving the partial voting results
from all shards, i.e., in the conditional sentence of calling the shardGather_gather function, the winner of the
voting proposals is calculated and set as last_result.

2 MORE LANGUAGE FEATURES
PREDA language has enriched features. We introduce several of them in this section. Please refer to PREDA
Language Specification [4] for more details.

2.1 Relay Statement with Lambda Expression
As shown in the previous example of the PREDA ballot contract, a relay statement can be defined as a lambda
function. The format is quite similar to defining a function, except that:

• A function name is not needed. The compiler automatically generates a name for it.
• The scope of an anonymous function can be address (user-defined), shard, or global, based on the relay
type.

• For each parameter, an argument must be provided as well.
• It is possible to use the "auto" keyword as the parameter type. In this case, the type is taken from the
corresponding argument expression.

The relay function body is executed on the per-address context of target address, the per-shard context of the
target shards, or the global context. It cannot be mixed with the current context scope on which the relay
statement is invoked. There’s two ways to specify a parameter in the relay lambda.

1 relay@someAddress (..., ^identifier , ...){

2 }

3 relay@someAddress (..., auto identifier = identifier , ...){

4 }

Listing 5. Relay Statement with Lambda Expression

They are equivalent but the first one is a simplified expression, where the ˆ operator is used to capture variable
by value, programmers can thus pass parameters to the function without renaming them.

2.2 System-reserved Functions
System-reserved functions are a group of special functions with the names reserved by PREDA for special
purposes. They don’t always have to be defined by a contract. But when they are, the definition must match a

PREDA Language: A Distributed Programming Language for General Smart Contracts • 2:7

certain signature and will be invoked by the system at certain points. They are const functions and may emit relay
transactions to do the actual task if needed. In addition, system-reserved functions may not access the transaction
context (because they are not invoked by a transaction), or any part of the block context that is of payload or
mined dependency (because they are executed before transactions in a block). There are two system-reserved
functions in PREDA .

• on_deploy(): it is a global function that is invoked when a contract is deployed. It can be used to do some
initialization of the contract state. Its signature is: function on_deploy().

• on_scaleout(): it is a shard function that is invoked when the scaleout of the sharded blockchain happens,
i.e. when the shard order of the blockchain system is increased by 1, i.e., from 𝑛 − 1 to 𝑛 and the total
number of shards doubles from 2𝑛−1 to 2𝑛 . On scaleout, each of the old 2𝑛−1 shards is forked to two new
shards: from 𝑠ℎ𝑎𝑟𝑑 [𝑖] to 𝑠ℎ𝑎𝑟𝑑 [𝑖] and 𝑠ℎ𝑎𝑟𝑑 [𝑖 + 2𝑛−1], where 0 <= 𝑖 < 2𝑛−1. The on_scaleout function
is called 2𝑛 times, once per shard. It can be used to split the old per-shard contract state into the two
new shards. The signature is: function on_scaleout(bool). The boolean parameter tells whether the
current shard is forked in place (when false), or with offset 2𝑛−1 (when true).

Note that although the system-reserved functions are defined in the PREDA language specification, they are not
mandatory for underlying sharded blockchain systems. If a sharded blockchain doesn’t support a system-reserved
function, a PREDA contract using the function can still be compiled and executed on the sharded blockchain but
doesn’t have the functionality defined by the system-reserved function.

2.3 Multiple Contracts
In PREDA , a contract could interact with other contracts that are already deployed on the chain. To interact with
another contract that contract must first be imported to the current contract as below:

1 import DAppName.ContractName [as AliasName];

DAppName and ContractName are the corresponding names assigned when deploying the imported contract.
AliasName is an optional arbitrary identifier to reference it in the current contract. If AliasName is not given,
ContractName will be used instead for referencing. The import must be declared before the new contract
definition.

The PREDA language specification supports explicit import and implicit import. When a contract is imported
by an import directive, it is explicitly imported. Besides that, a contract could also be implicitly imported if it is
indirectly imported, like in the following example:

1 contract ContractA{

2 }

3
4 import MyDApp.ContractA as A; // ContractA is explicitly imported

5 contract ContractB{

6 }

7
8 import MyDApp.ContractB as B; // ContractA is implicitly imported

9 contract ContractC{

10 }

An implicitly-imported contract doesn’t have a user-defined alias and can be referenced by its contract name
by the compiler. In the above example, MyDApp.ContractA is referenced as ContractA in Contract C. To have a
specific alias, it could be explicitly imported again. For example:

1 import MyDApp.ContractB as B; // ContractB is explicitly imported

2 import MyDApp.ContractA as A; // ContractA is explicitly imported as A

3 contract ContractC{

4 }

2:8 • PREDA Dev Team, devteam@preda-lang.org

After importing a contract, all user-defined types and scopes from it could be accessed under the contract alias.
As shown in the example below, after ContractB imports ContractA, the function f in ContractB has the scope
myScope defined in ContractA.

1 contract ContractA{

2 struct S{

3 int32 i;

4 }

5 enum E{

6 E0,

7 E1

8 }

9 @myScope = global by address;
10 }

11 import MyDApp.ContractA as A;

12 contract ContractB{

13 @A.myScope {

14 A.S s;

15 A.E e;

16 function f(){

17 s.i = 1i32;

18 e = A.E.E0;

19 }

20 }

21 }

Similar to user-defined types, public functions defined in other contracts could also be directly referenced via
the alias.

1 contract ContractA{

2 struct S{

3 int32 i;

4 }

5 enum E{

6 E0,

7 E1

8 }

9 @myScope = global by address;
10 @myScope {

11 function f(S s, E e) public{ // only public functions can be called by other contracts

12 }

13 }

14 }

15 import MyDApp.ContractA as A;

16 contract ContractB{

17 @A.myScope {

18 A.S s;

19 A.E e;

20 function f(){

21 A.f(s, e); // call the public function f() from MyDApp.ContractA

22 }

23 }

24 }

The basic scope visibility rules hold for cross-contract calls, i.e., each scope can only call functions in the same
scope, in the shard scope and const functions in the global scope.

PREDA Language: A Distributed Programming Language for General Smart Contracts • 2:9

2.4 Interfaces
Interfaces provide another way to work with multiple contracts. While only known contracts can be imported,
interfaces enables interaction with arbitrary contracts that implements it. Interfaces are defined at the contract
level. Each interface is a set of function definitions with empty bodies. Similar to regular functions, the functions
of an interface must also reside in scopes:

1 contract A {

2 interface Addable {

3 @address {

4 function Add(uint64 value);
5 }

6 @global {

7 function uint64 GetTotal () const;

8 }

9 }

10 }

The above contract defines an interface Addable with two functions, each in a different scope. Interfaces can use
scopes freely like scopes in contracts, including user-defined scopes and imported scopes from other contracts.
Contracts can choose to implement interfaces using the implements keyword at definition. A contract can

choose to implement arbitrary number of interfaces, which can either be those defined in the same contract, or
imported interfaces from other contracts.

1 import A;

2 contract B implements A.Addable , Printable { // use "implements" to implement interfaces

3 interface Printable {

4 @global {

5 function Print() const;

6 }

7 }

8
9 @global {

10 uint64 total;

11 function uint64 GetTotal () public const { // GetTotal() for A.Addable

12 return total;

13 }

14 function Print() public const { // Print() for Printable

15 __debug.print(globalTotal);

16 }

17 }

18 @address {

19 function Add(uint64 value) public { // Add() for A.Addable

20 relay@global (^ value) {

21 total += value;
22 }

23 }

24 }

25 }

The above contract implements two interface: Printable defined in the contract itself, and Addable defined in
contract A from the previous section.

To implement an interface, a contract must implement all the functions defined in that interface, and the signa-
ture of the implemented function must match exactly the definition in the interface, i.e. the same function name,
parameter list and type, return type, const-ness and scope. In addition, interface function must be implemented
as public, since they are used for cross-contract calls. When a contract implements an interface, other contracts
can interact with it via the interface. For example:

2:10 • PREDA Dev Team, devteam@preda-lang.org

1 import B; // A is implicitly imported via B

2 contract C {

3 @address {

4 function test() {

5 A.Addable addable = A.Addable(B.__id()); // initialize addable with contract B’s id

6 addable.Add (100 u64); // Calls B.Add() via the interface

7 }

8 }

9 }

In this example, a variable of interface type A.Addable is defined. Interface types can be initialized with a contract
id. Here, it is initialized with a B’s id using the build-in function __id() that is automatically generated for each
contract. Once an interface variable is initialized, it can be used to call any function defined in the interface and
routed to the corresponding implementation in contract B. With interfaces, a contract can interact with any other
contract that implements the interface without knowing them. For example:

1 import A;

2 contract Adder {

3 @address {

4 function Add(A.Addable addable , uint64 value) public {

5 addable.Add(value);
6 }

7 }

8 }

When the interface is defined, there is no need to import any other contract other than A. The function Add accepts
an A.Addable interface as parameter, which could possibly be initialized by the id of any other contract that
implements A.Addable. Note that if calling a function on an interface variable that is uninitialized, or initialized
with the id of a contract that actually doesn’t implement the interface, an error would occur and the contract
execution will fail immediately.

3 DEPLOYMENT AND EXECUTION ENGINES
We have implemented a preview toolchain for the PREDA programming language. The PREDA language preview
toolchain includes the pre-built PREDA compilers and execution engines, VSCode extensions, and sample smart
contracts and execution scripts. Programmers can use VSCode to edit, compile, and execute PREDA smart
contracts in a local blockchain simulator. The chain simulator uses multiple threads to mimic multiple shards of a
sharded blockchain (one for each) on a single node. Programmers can also use the VSCode extension to check the
contract execution results, e.g., address states on the chain. The supported command lines of the chain simulator
and the script syntax of the chain simulator can be found in the PREDA toolchain user manual [5].

3.1 Contract State Management in Chain Simulator
In the implementation of the PREDA chain simulator, we use the Map of the contract ID to the contract states as
the basic data structure. The basic chain state is divided into pieces represented as <scope, [shard/address],

contract map>. The chain simulator uses this structure to track partial changes to the entire chain state. At
runtime, the execution of transactions, including those in chain blocks and orphaned blocks, results in newly
modified contract states. We store incremental changes to contract states as follows:
<Global State> ::= <Contract Map>
<Shard State> ::= <Contract Map>
<Address State> ::= MAP(<Address> => <Contract Map>)
<Contract Map> ::= MAP(<Contract Id> => <State History>)
<State History> ::= ARRAY(<State on Chain>)

PREDA Language: A Distributed Programming Language for General Smart Contracts • 2:11

<State on Chain> ::= <Height, Block Id, Opaque State Data>

Note that the array <State History> is sorted as the chain height increases. In the chain simulator, the total
chain states include: (1) the base chain states for archived blocks that are not reverted, and (2) a history of
incremental changes made by all blocks since the height of the last archived block, including blocks in forked
chains.

3.2 Contract Compilation
We employ a two-stage process to compile smart contracts written in PREDA to native code. The first stage is a
transpiler that interprets the PREDA source code and converts it to an intermediate representation, which is
then consumed by the second stage to generate the binary code. We use C++ source code as our intermediate
representation.

Our transpiler uses ANTLR [1] to generate the parser code based on the PREDA language specification. Then,
the transpiler walks through the abstract syntax tree (AST) to extract state variables, user-types, and function
definitions, and outputs the corresponding C++ code. The output of the transpiler for each contract is a single
C++ complication unit. To compile C++ code to binary code, we use MinGW-w64 [2] on Windows and g++ on
Linux. Their output are dynamic libraries that can be loaded on demand at runtime when a contract needs to be
executed on the chain simulator.
Other than the local chain simulator, we are developing an experimental sharded blockchain for PREDA ,

with the supports of blockchain wallets and explorer services. We are also integrating EVMone into the chain
simulator to implement the interoperability between Solidity and PREDA.

REFERENCES
[1] [n. d.]. ANother Tool for Language Recognition. https://www.antlr.org/.
[2] [n. d.]. MinGW-w64. https://www.mingw-w64.org/.
[3] EthereumDev. 2020. Transfers and Approval of ERC-20 Tokens from a Solidity Smart Contract. https://ethereum.org/pt-br/developers/

tutorials/transfers-and-approval-of-erc-20-tokens-/\from-a-solidity-smart-contract/.
[4] PREDA Dev Team. 2022. PREDA Language Specification.
[5] PREDA Dev Team. 2022. PREDA Toolchain User Manual.

https://www.antlr.org/
https://www.mingw-w64.org/
https://ethereum.org/pt-br/developers/tutorials/transfers-and-approval-of-erc-20-tokens-/\from-a-solidity-smart-contract/
https://ethereum.org/pt-br/developers/tutorials/transfers-and-approval-of-erc-20-tokens-/\from-a-solidity-smart-contract/

	Abstract
	1 Introduction
	1.1 Multiple Chains
	1.2 Functional Relay
	1.3 Programmable Scopes

	2 Programming Model
	2.1 Scope-Oriented Smart Contracts
	2.2 Distributed Scopes
	2.3 Inherent Parallelization
	2.4 Functional Relay
	2.5 Colocated Scopes

	3 Hosting Model
	3.1 Execution Engine
	3.2 Transactions and Blocks
	3.3 Global Scope

	4 Conclusion
	A Synchronous Sharding with Global Scope
	A.1 Multi-Chain Structure
	A.2 Data Structures
	A.3 Scalability

	References

